# Notes

### Anionic Tantalum(V) Bis(dicarbollide) Complexes with Bent-Metallocene Structures

## Roger Uhrhammer, Yue-Xin Su, Dale C. Swenson, and Richard F. Jordan<sup>\*</sup>

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

Received March 30, 1994

#### Introduction

Bis(dicarbollide) complexes  $(\eta^5-C_2B_9H_{11})_2M$  which adopt ferrocene-type metallocene structures are well-known.<sup>1</sup> However,  $(\eta^5 - C_2 B_9 H_{11})_2 M X_n$  species with bent metallocene structures are comparitively rare and to our knowledge are limited to the f-block metals. Key examples include Raymond's dianionic U(IV) complex  $(\eta^5 - C_2 B_9 H_{11})_2 U C l_2^{2-2}$  and a series of lanthanide complexes  $(\eta^5 - C_2 B_9 H_{11})_2 Ln(THF)_2^-$  (Ln = Sm, Yb) prepared by Hawthorne.<sup>3</sup> Recently, Hosmane has characterized a series of  $\{\eta^{5}-2-(SiMe_{3})-3-(R)-2,3-C_{2}B_{4}H_{4}\}_{2}M(Cl)(THF)^{n-}$  (n = 2, Y; n = 1, Zr, Hf) complexes which adopt bent-metallocene structures.<sup>4</sup> For several years we have been investigating the possibility of exploiting carborane ligands in the construction of electrophilic early transition metal alkyl systems,<sup>5</sup> and we have reported on a series of mixed-ring bent-metallocene (C5- $Me_5(C_2B_9H_{11})M(R)$  (M = Zr, Hf) and  $(C_5H_4R)(C_2B_9H_{11})TaX_2$ (R = H, Me) species.<sup>6,7</sup> During the course of this work we prepared a series of anionic tantalum(V) bis(dicarbollide) complexes,  $(\eta^5 - C_2 B_9 H_{11})_2 Ta X_2^-$  (X = Cl (1), Me (2), F (3)), which adopt bent-metallocene structures. The synthesis and characterization of these compounds are discussed in this contribution.

#### **Experimental Section**

General Procedures. All manipulations were performed on a highvacuum line or in a glovebox  $N_2$  atmosphere. Toluene and pentane were distilled from sodium/benzophenone ketyl.  $CH_2Cl_2$  was distilled

- (2) Fronczek, F. R.; Halstead, G. W.; Raymond, K. N. J. Am. Chem. Soc. 1977, 99, 1769.
- (3) Manning, M. J.; Knobler, C. B.; Khattar, R.; Hawthorne, M. F. Inorg. Chem. 1991, 30, 2009.
- (4) (a) Oki, A. R.; Zhang, H.; Hosmane, N. S. Organometallics 1991, 10, 3964. (b) Siriwardane, U.; Zhang, H.; Hosmane, N. S. J. Am. Chem. Soc. 1990, 112, 9635. (c) Jia, L.; Zhang, H.; Hosmane, N. S. Acta Crystallogr. 1993, C49, 453.
- (5) Jordan R. F. Adv. Organomet. Chem. 1991, 32, 325.
- (6) (a) Crowther, D. J.; Baenziger, N. C.; Jordan, R. F. J. Am. Chem. Soc. 1991, 113, 1455. (b) Jordan, R. F. Makromol. Chem., Macromol. Symp. 1993, 66, 121.
- (7) Uhrhammer, R.; Crowther, D. J.; Olson, J. D.; Swenson, D. C.; Jordan, R. F. Organometallics 1992, 11, 3098.

NMR spectra were recorded on Bruker AMX-360 and AC-300 spectrometers in flame-sealed or Teflon-valved (J. Young) tubes. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts are reported vs Me<sub>4</sub>Si and were determined by reference to the residual <sup>1</sup>H and <sup>13</sup>C NMR solvent peaks. <sup>11</sup>B{<sup>1</sup>H} NMR spectra are referenced to external BF<sub>3</sub>·Et<sub>2</sub>O ( $\delta$  0, C<sub>6</sub>D<sub>6</sub>). The numbering system used in the <sup>11</sup>B NMR assignments is based on that in Figure 1. Assignments are based on <sup>11</sup>B-<sup>11</sup>B COSY data.<sup>8</sup> In some cases (noted below) expected <sup>11</sup>B-<sup>11</sup>B COSY correlations involving B nuclei which flank the carborane C nuclei were not observed; this phenomenon has been noted previously and has been ascribed to diversion of s electron density away from B-B bonds to B-C bonds.<sup>9</sup> <sup>19</sup>F NMR spectra are referenced to external CCl<sub>3</sub>F ( $\delta$  0, CD<sub>2</sub>Cl<sub>2</sub>). Elemental analyses were performed by E & R Microanalytical Laboratory, Inc. (C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)TaCl<sub>3</sub><sup>7</sup> and [PPN][TI(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)]<sup>10</sup> were prepared by literature methods.

[PPN][(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)<sub>2</sub>TaCl<sub>2</sub>] (1). A slurry of (C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)TaCl<sub>3</sub> (336 mg, 0.800 mmol) and [PPN][Tl(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)] (700 mg, 0.800 mmol) in CH<sub>2</sub>-Cl<sub>2</sub> (100 mL) was prepared at -78 °C. The mixture was warmed to 23 °C and stirred for 1 h. The slurry was filtered through an E porosity Schlenk frit, and the residue on the frit was washed with  $CH_2Cl_2$  (2 × 10 mL). The combined filtrate and wash was evaporated to dryness and dried overnight under vacuum yielding 1 (0.824 g, 99%) as a redbrown oily solid. This material may be purified by dissolution in CH2-Cl<sub>2</sub> and reprecipitation with pentane. <sup>1</sup>H NMR (360 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ 7.67 (m, 6 H, PPN), 7.48 (m, 24 H, PPN), 3.64 (s, 4 H, CH), 4.0-1.5 (br m, 18 H, BH).  $^{13}\text{C}\{^{1}\text{H}\}$  NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  134.0, 132.4 (vir t, J = 6 Hz), 129.8 (vir t, J = 7 Hz), 127.3 (dd, J = 109, 1.8 Hz), 62.1  $(C_2B_9H_{11})$ . <sup>11</sup>B{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  26.7 (B2), 2.9 (B6, B7), -4.7 (B5, B8), -5.6 (B1, B3), -11.8 (B4), -14.4 (B9). <sup>11</sup>B-<sup>11</sup>B COSY (CD<sub>2</sub>Cl<sub>2</sub>) (correlations observed): B2-(B1, B3) s; B2-(B6, B7) m; (B1, B3)-(B5, B8) m; (B6, B7)-(B5, B8) w; (B6, B7)-(B9) m; (B5, B8)-B9 w.<sup>11</sup> Anal. Calcd for  $C_{40}H_{52}B_{18}Cl_2NP_2Ta$ : C, 45.53; H, 4.97; Cl, 6.72; N, 1.33. Found: C, 45.33; H, 5.03; Cl, 6.90; N, 1.38.

**[PPN][(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)<sub>2</sub>TaMe<sub>2</sub>] (2). Method A.** A solution of MeLi in Et<sub>2</sub>O (0.27 mL, 1.4 M, 0.38 mmol, Aldrich) was added dropwise via syringe to a solution of [PPN][(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)<sub>2</sub>TaCl<sub>2</sub>] (200 mg, 0.189 mmol) in toluene (40 mL). The mixture was stirred at 23 °C for 2 h. The resulting yellow slurry was centrifuged, and the residue was extracted with toluene (200 mL) until the remaining residue was off-white in color. The combined extract was concentrated to 125 mL and cooled to -32 °C for 6 h. Filtration yielded 135 mg of 2 as yellow crystals. The filtrate was concentrated to 25 mL and stored at -32 °C overnight, yielding an additional 45 mg of 2. Total yield: 77%.

**Method B.** A solution of MeLi in Et<sub>2</sub>O (0.14 mL, 1.4 M, 0.19 mmol, Aldrich) was added dropwise via syringe to a solution of [PPN]-[( $C_2B_9H_{11}$ )<sub>2</sub>TaCl<sub>2</sub>] (100 mg, 0.195 mmol) in toluene (40 mL). The mixture was stirred at 23 °C for 2 h. The resulting slurry was evaporated to dryness under vacuum. The crude product was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10 mL), and the mixture was filtered through a frit covered with Celite. The Celite was washed with CH<sub>2</sub>Cl<sub>2</sub> (2 × 10 mL). The combined filtrate and wash was quickly evaporated to dryness under

- (10) (a) Manning, M. J.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1991, 30, 3589. (b) Spencer, J. L.; Green, M.; Stone, F. G. A. J. Chem. Soc., Chem. Commun. 1972, 1178. (c) See also: Jutzi, P.; Wegener, D.; Hursthouse, M. B. Chem. Ber. 1991, 124, 295.
- (11) Expected B4-(B3, B5, B9) and (B1, B3)-(B6, B7) correlations not observed.

 <sup>(</sup>a) Hawthorne, M. F.; Young, D. C.; Andrews, T. D.; Howe, D. V.; Pilling, R. L.; Pitts, A. D.; Reintjes, M.; Warren, L. F., Jr.; Wegner, P. A. J. Am. Chem. Soc. 1968, 90, 879. (b) Zalkin, A.; Hopkins, T. E.; Templeton, D. H. Inorg. Chem. 1967, 6, 1911. (c) St. Clair, D.; Zalkin, A.; Templeton, D. H. J. Am. Chem. Soc. 1970, 92, 1173. (d) Wing, R. M. J. Am. Chem. Soc. 1970, 92, 1187. (e) Ruhle, H. W.; Hawthorne, F. Inorg. Chem. 1968, 7, 2279. (f) Warren, L. F., Jr.; Hawthorne, M. F. J. Am. Chem. Soc. 1970, 92, 1157. (g) Churchill, M. R.; Gold, K. J. Am. Chem. Soc. 1970, 92, 1180. (h) Schubert, D. M.; Rees, W. S., Jr.; Knobler, C. B.; Hawthorne, M. F. Organometallics 1990, 9, 2938. (i) Kang, H. C.; Lee, S. S.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1991, 30, 2024. (j) Callahan, K. P.; Hawthorne, M. F. Adv. Organomet. Chem. 1976, 14, 145. (k) For related compounds, see: Salentine, C. G.; Hawthorne, M. F. Inorg. Chem. 1976, 15, 2872.

<sup>(8)</sup> Venable, T. L.; Hutton, W. C.; Grimes, R. N. J. Am. Chem. Soc. 1984, 106, 29.

<sup>(9) (</sup>a) Brown, M.; Plesek, J.; Base, K.; Stibr, B. Magn. Reson. Chem. 1989, 27, 947. (b) Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; Nestor, K.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1990, 681. (c) Hlatky, G. G.; Eckman, R. R.; Turner, H. W. Organometallics 1992, 11, 1413.



Figure 1. ORTEP view of the  $(\eta^5 - C_2 B_9 H_{11})_2 Ta Me_2^-$  anion of 2.

vacuum. The residue was recrystallized from toluene/pentane yielding 2 (69 mg, 72%). Traces of toluene in 2 can be removed by (i) dissolution of 2 in CH<sub>2</sub>Cl<sub>2</sub> followed by solvent removal and drying under vacuum at 23 °C for 15 h or (ii) drying under vacuum at 65 °C for 44 h. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.65 (m, 6 H, PPN), 7.50 (m, 24 H, PPN), 4.25 (s, 4 H, CH), 3.0–0.5 (br m, 18 H, BH), 1.38 (s, 6 H, Me). <sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  134.1, 132.5 (vir t, *J* = 6 Hz), 127.4 (d, *J* = 109 Hz), 78.4 (Me), 60.8 (*C*<sub>2</sub>B<sub>9</sub>H<sub>1</sub>). <sup>11</sup>B{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>): 12.9 (B2), 0.1 (B1, B3, B6, B7), -8.7 (B9), -11.1 (B5, B8), -14.4 (B4). <sup>11</sup>B<sup>-11</sup>B COSY (115 MHz, CD<sub>2</sub>Cl<sub>2</sub>) (correlations observed): B2–(B6, B7) w; B2–(B1, B3) s; (B6, B7)–(B5, B8) m; (B6, B7)–(B9) m; (B5, B8)–B9 vw.<sup>12</sup> Anal. Calcd for C<sub>42</sub>H<sub>58</sub>B<sub>18</sub>NP<sub>2</sub>Ta: C, 49.73; H, 5.76; N, 1.36. Found: C, 49.64; H, 5.54; N, 1.36.

 $[PPN][(C_2B_9H_{11})_2TaF_2]$  (3). A mixture of 1 (292 mg, 0.276 mmol) and Ag[PF<sub>6</sub>] (140. mg, 0.554 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL) was stirred at 23 °C for 24 h and then heated at 50 °C for 30 h. The resulting vellow slurry was filtered, and the precipitate was washed with  $CH_2Cl_2$  (2 × 10 mL). The combined filtrate and wash was evaporated to dryness and dried overnight yielding a yellow oily solid 3 (285 mg, 98%). Attempts to recrystallize this material were unsuccessful. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>): δ 7.67 (m, 6H, PPN), 7.50 (m, 24 H, PPN), 3.81 (s, 4 H, CH), 4.00-0.50 (br m, 18 H, BH). <sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  134.1, 132.5 (vir t, J = 6 Hz), 129.8 (vir t, J = 6 Hz), 127.4 (d, J = 109 Hz), 69.0 ( $C_2B_9H_{11}$ ). <sup>19</sup>F NMR ( $CD_2Cl_2$ ):  $\delta$  14.6. <sup>11</sup>B{<sup>1</sup>H} NMR ( $CD_2$ -Cl<sub>2</sub>):  $\delta$  13.2 (B2), 1.5 (B6, B7), 0.4 (B1, B3), -7.6 (B5, B8), -10.5 (B4), -10.6 (B9). <sup>11</sup>B-<sup>11</sup>B COSY (CD<sub>2</sub>Cl<sub>2</sub>) (correlations observed): B2-(B1, B3) s; B2-(B6, B7) vw, (B1, B3)-(B6, B7) m; (B6, B7)-(B5, B8) m; (B6, B7)-(B9) m; (B5, B8)-(B4) w, (B5, B8)-B9 vw.<sup>13</sup> Anal. Calcd for  $C_{40}H_{52}B_{18}F_2NP_2Ta$ : C, 46.99; H, 5.13; N, 1.37; F, 3.72. Found: C, 46.74; H, 4.90; N, 1.18; F, 3.62.

X-ray Diffraction Analysis of 2. Single crystals of 2-CH<sub>2</sub>Cl<sub>2</sub> suitable for X-ray diffraction were grown by cooling a CH<sub>2</sub>Cl<sub>2</sub>/pentane solution of 2 at -32 °C and sealed in glass capillaries under N<sub>2</sub>. Diffraction data were obtained with an Enraf-Nonius CAD4 diffractomer, and all calculations were made using the SDP package provided with this system.<sup>14</sup> Crystallographic details are summarized in Table 1.

**Table 1.** Summary of Crystallographic Data for  $[PPN][(C_2B_9H_{11})_2TaMe_2]$  (2)

| - |                                       |                                              |
|---|---------------------------------------|----------------------------------------------|
|   | empirical formula                     | $C_{42}H_{58}B_{18}NP_2Ta\textbf{-}CH_2Cl_2$ |
|   | fw                                    | 1099.36                                      |
|   | cryst size (mm)                       | $0.36 \times 0.37 \times 0.23$               |
|   | cryst color                           | yellow                                       |
|   | $T(\mathbf{K})$                       | 295                                          |
|   | space group                           | PĪ                                           |
|   | a (Å)                                 | 15.012(5)                                    |
|   | $b(\mathbf{A})$                       | 14.777(5)                                    |
|   | $c(\mathbf{A})$                       | 12.117(6)                                    |
|   | a (deg)                               | 90.31(4)                                     |
|   | $\beta$ (deg)                         | 96.03(4)                                     |
|   | $\gamma$ (deg)                        | 79.96(3)                                     |
|   | $V(Å^3)$                              | 2632.(3)                                     |
|   | Z                                     | 2                                            |
|   | $d_{\text{calcd}}(g/cm^3)$            | 1.39                                         |
|   | cell dimen determination              | 24 reflns; $19 < 2\theta < 28$               |
|   | λ (Mo Kα radiation, Å)                | 0.7107                                       |
|   | scan ratio $(\omega/\theta)$          | 1                                            |
|   | scan limit (deg)                      | $2 < \theta < 25$                            |
|   | scan speed (deg/min)                  | 1.5-5.0                                      |
|   | $\omega$ scan range (deg)             | $0.75 + \tan \theta$                         |
|   | data collected $h; k; l$              | -17, 17; -17, 17; -14, 8                     |
|   | no. of tot. reflns                    | 12 804                                       |
|   | no. of unique reflns                  | 9194                                         |
|   | no. of refins used, $I < 2\sigma(I)$  | 5863                                         |
|   | R <sub>int</sub>                      | 0.047                                        |
|   | max decay cor factor                  | 1.175                                        |
|   | $\mu$ , cm <sup>-1</sup>              | 14.3                                         |
|   | empirical abs cor range               | 1.00-1.32                                    |
|   | structure soln method                 | Patterson/Fourier                            |
|   | refinement <sup>a</sup>               | all non-H anisotropic, H isotropic           |
|   | tot. no. of params                    | 688                                          |
|   | R                                     | 0.059                                        |
|   | R <sub>w</sub>                        | 0.080                                        |
|   | weighting coeff: $P, Q^b$             | 0.04, 0.0                                    |
|   | SDOUW                                 | 1.478                                        |
|   | max shift/esd                         | 0.24                                         |
|   | max resid density (e/Å <sup>3</sup> ) | 4.34 <sup>d</sup>                            |
|   | • • • /                               |                                              |

<sup>*a*</sup> Non-dicarbollide H atoms were fixed at theoretical positions with  $B_{\rm H} = 1.1(B_{\rm C})_{\rm eq}$ . <sup>*b*</sup>  $w = [\sigma_F^2 + (PF)^2 + Q]^{-1}$ . <sup>*c*</sup> Standard Deviation of Unit Weight. <sup>*d*</sup> Near Ta atom and due to absorption.

#### **Results and Discussion**

Synthesis of [PPN][(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)<sub>2</sub>TaCl<sub>2</sub>] (1). The reaction of (C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)TaCl<sub>3</sub> and [PPN][Tl(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)] in CH<sub>2</sub>Cl<sub>2</sub> (23 °C, 1 h) yields [PPN][ $(C_2B_9H_{11})_2TaCl_2$ ] (1, >95%) as an air sensitive, oily red-brown solid (Scheme 1). Compound 1 is also formed by the reaction of  $TaCl_5$  with 2 equiv of  $[PPN][Tl(C_2B_9H_{11})]$ though in lower isolated yield. The <sup>11</sup>B NMR spectrum of 1 contains a single set of B-H resonances in a 1,2,2,2,1,1 intensity pattern, indicating that the two dicarbollide ligands are equivalent and that the sides of each dicarbollide ligand are equivalent. This is confirmed by the observation of single <sup>1</sup>H ( $\delta$  3.64) and <sup>13</sup>C ( $\delta$  62.1) NMR resonances for the dicarbollide C–H units. The <sup>11</sup>B chemical shifts are similar to those for the mixedring bent metallocene species  $(C_5H_5R)(\eta^5-C_2B_9H_{11})TaCl_2$  (R = H, Me), with the exception of the B2 resonance (see Figure 1 for numbering system), which is shifted downfield by ca. 20 ppm to  $\delta$  26.7. Collectively, these data are consistent with the  $C_{2\nu}$ -symmetric bent-metallocene structure exhibited in Scheme 1.

Complex 1 is soluble and stable in THF,  $CH_2Cl_2$ , and chlorobenzene. It is also moderately soluble in toluene, which is an effective solvent for extraction of 1 from the TlCl coproduct in its synthesis. However, this species is susceptible to loss of a carborane ligand upon reaction with Bronsted or Lewis acids. Complex 1 reacts rapidly with  $H_2O$  or HCl to

<sup>(12)</sup> Expected B4-(B5, B8, B9) and (B1, B3)-(B5, B6, B7, B8) correlations not observed.

<sup>(13)</sup> Expected (B1, B3)-(B5, B8) correlation not observed. B4 and B9 resonances insufficiently resolved to observe correlation.

<sup>(14)</sup> Frenz, B. A. The Enraf-Nonius CAD4 SDP System. In Computing in Crystallography; Delft University Press: Delft, Holland, 1978; p 64.

Scheme 1



yield  $C_2B_9H_{12}^{-}$  as the principal boron-containing product<sup>15</sup> and is thus highly moisture sensitive. The reaction of 1 with AlCl<sub>3</sub> in  $C_2D_2Cl_4$  is complex. NMR analysis establishes that ( $C_2B_9H_{11}$ )-TaCl<sub>3</sub> is a major (and the only identifiable) product after 24 h, indicating that abstraction of a dicarbollide ligand occurs.<sup>16</sup>

Synthesis and Properties of [PPN][( $C_2B_9H_{11}$ )<sub>2</sub>TaMe<sub>2</sub>] (2). Alkylation of 1 with 2 equiv of CH<sub>3</sub>Li or CH<sub>3</sub>MgBr in toluene produces [PPN][( $C_2B_9H_{11}$ )<sub>2</sub>TaMe<sub>2</sub>] (2, 77%, Scheme 1), which is isolated as a yellow crystalline solid by recrystallization from toluene. Compound 2 is also formed by the reaction of 1 with AlMe<sub>3</sub> but less cleanly. The <sup>11</sup>B NMR spectrum of 2 contains a single set of B—H resonances in a 1,4,1,2,1 intensity pattern, and single <sup>1</sup>H and <sup>13</sup>C NMR resonances are observed for the carborane C—H units and the Ta—Me groups. These NMR data are consistent with a  $C_{2v}$ -symmetric bent-metallocene structure analogous to that proposed above for 1. This has been confirmed by X-ray crystallography.

Crystals of 2-CH<sub>2</sub>Cl<sub>2</sub> were obtained by slow crystallization of 2 from CH<sub>2</sub>Cl<sub>2</sub>/pentane. Compound 2 crystallizes as discrete cations and anions. The anion structure is shown in Figure 1, and crystallographic details are summarized in Tables 1–3. The  $(C_2B_9H_{11})_2TaMe_2^-$  anion adopts a distorted tetrahedral, bentmetallocene structure containing two  $\eta^5$ -dicarbollide ligands arranged in a staggered orientation. This structure is comparable to those of sterically similar d<sup>0</sup> Cp<sub>2</sub>MX<sub>2</sub> complexes.<sup>17</sup> The centroid—Ta—centroid angle (137.2°) is similar to those in (C<sub>5</sub>-Me<sub>5</sub>)<sub>2</sub>Ta<sup>V</sup> complexes (e.g., (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Ta(OH)(CH<sub>3</sub>)<sup>+</sup>, 137.3°; (C<sub>5</sub>-

**Table 2.** Selected Bond Distances (Å) and Bond Angles (deg) for  $[PPN][(C_2B_9H_{11})_2TaMe_2]^a$ 

| $\begin{array}{c} Ta-C1 \\ Ta-C2 \\ Ta-C3 \\ Ta-C4 \\ Ta-C5 \\ Ta-C6 \\ Ta-Ctd1 \\ av B-C \\ C3-C4 \\ N=P1 \end{array}$ | 2.20(1)<br>2.22(2)<br>2.47(1)<br>2.50(1)<br>2.57(1)<br>2.52(1)<br>2.05<br>1.69(1)<br>1.59(1)<br>1.58(1) | Ta-B1<br>Ta-B2<br>Ta-B3<br>Ta-B11<br>Ta-B12<br>Ta-B13<br>Ta-Ctd2<br>ave B-B<br>C5-C6<br>ave P1-C | 2.58(1)<br>2.51(1)<br>2.43(1)<br>2.52(1)<br>2.51(1)<br>2.51(1)<br>2.51(1)<br>2.08<br>1.76(1)<br>1.57(2) |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| N-P2                                                                                                                    | 1.57(1)                                                                                                 | av P2-C                                                                                          | 1.80(1)                                                                                                 |  |
| C1-Ta-C2<br>Ctd1-Ta-C1<br>Ctd2-Ta-C1<br>ave N-P1-C<br>P1-N-P2                                                           | 82.5(7)<br>106.9<br>103.6<br>111.8<br>143.2(5)                                                          | Ctd1-Ta-Ctd2<br>Ctd1-Ta-C2<br>Ctd2-Ta-C2<br>ave N-P2-C                                           | 137.2<br>108.2<br>104.7<br>111.5                                                                        |  |

<sup>*a*</sup> Ctd1 and Ctd2 are the centroids of the B1–C4 and B11–C6  $\eta^5$ -faces of the dicarbollide ligands.

Me<sub>5</sub>)<sub>2</sub>Ta(OH)<sub>2</sub><sup>+</sup>, 138.4°)<sup>18</sup> in which steric interactions are expected to be similar due to the similarity in C<sub>5</sub>Me<sub>5</sub><sup>-</sup> and C<sub>2</sub>B<sub>9</sub>H<sub>11</sub><sup>2-</sup> cone angles.<sup>19</sup> Similar centroid—Ti—centroid angles are observed in (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Ti<sup>1V</sup> complexes (e.g., (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>TiCl<sub>2</sub>, 137.4°; (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Ti(CH<sub>3</sub>)(THF)<sup>+</sup>, 137.8°)<sup>20</sup> in which steric interactions also are expected to be similar to those in **2** due to the nearly identical ionic radii of Ti(IV) and Ta(V).<sup>21</sup> The B11—C6 dicarbollide ligand of **2** is bound in a very symmetrical fashion (Ta—C/B distances 2.51 ± 0.01 Å), and the C/B—H bonds on the  $\eta^5$ -face point toward Ta as normally observed

- (18) (a) Schaefer, W. P.; Quan, R. W.; Bercaw, J. E. Acta Crystallogr. 1993, C49, 878. (b) Quan, R. W.; Bercaw, J. E.; Schaefer, W. P. Acta Crystallogr. 1991, C47, 2057.
- (19) Hanusa, T. P. Polyhedron 1982, 1, 661.
- (20) (a) McKenzie, T. C.; Sanner, R. D.; Bercaw, J. E. J. Organomet. Chem. 1975, 102, 457. (b) Bochmann, M.; Jaggar, A. J.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Polyhedron 1989, 8, 1838.
- (21) The ionic radii of Ti(IV) and Ta(V) are both 0.74 Å (8-coordinate geometry): Shannon, R. D. Acta Crystallogr. 1976, A32, 751.

<sup>(15)</sup> Buchanan, J.; Hamilton, E. J. M.; Reed, D.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1990, 677.

<sup>(16)</sup> For Al dicarbollide species see: Schubert, D. M.; Bandman, M. A.; Rees, W. S., Jr.; Knobler, C. B.; Lu, P.; Nam, W.; Hawthorne, M. F. Organometallics 1990, 9, 2046.

<sup>(17) (</sup>a) Prout, K.; Cameron, T. S.; Forder, R. A.; Crithcley, S. R.; Denton, B.; Rees, G. V. Acta Crystallogr. **1974**, B30, 2290. (b) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. **1976**, 98, 1729. (c) Cardin, D. J.; Lappert, M. F.; Raston, C. L. Chemistry of Organo-Zirconium and *Hafnium Compounds*; John Wiley and Sons: New York, 1986; Chapter 4.

Table 3. Positional Parameters and Thermal Parameters (Å<sup>2</sup>) for [PPN][(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)<sub>2</sub>TaMe<sub>2</sub>]

| atom | x          | у          | z          | $B^a$    | atom        | x          | у          | z         | $B^a$   |
|------|------------|------------|------------|----------|-------------|------------|------------|-----------|---------|
| Ta   | 0.65144(3) | 0.09238(3) | 0.22675(4) | 4.422(9) | Ctd2        | 0.7903     | 0.0933     | 0.2345    |         |
| Cl1  | 0.4944(4)  | 0.5614(4)  | 0.1540(5)  | 12.2(2)  | C45         | -0.3531(8) | 0.4906(7)  | 0.4904(9) | 5.1(3)  |
| Cl2  | 0.5887(4)  | 0.7116(4)  | 0.1973(7)  | 14.5(2)  | C46         | -0.3155(7) | 0.4458(7)  | 0.5878(9) | 4.5(2)  |
| P1   | 0.0195(1)  | 0.3194(1)  | 0.7347(2)  | 2.63(4)  | C51         | -0.2319(6) | 0.2201(6)  | 0.7183(8) | 3.5(2)  |
| P2   | -0.1807(1) | 0.3210(1)  | 0.7146(2)  | 2.72(4)  | C52         | -0.3269(7) | 0.2257(6)  | 0.704(1)  | 4.7(2)  |
| Ν    | -0.0757(5) | 0.2874(5)  | 0.7136(6)  | 3.7(2)   | C53         | -0.3634(7) | 0.1478(8)  | 0.706(1)  | 5.9(3)  |
| C1   | 0.6445(9)  | -0.0490(8) | 0.277(2)   | 9.4(5)   | C54         | -0.3104(9) | 0.0649(7)  | 0.729(1)  | 7.1(4)  |
| C2   | 0.6146(9)  | 0.041(1)   | 0.059(1)   | 9.0(4)   | C55         | -0.219(1)  | 0.0586(8)  | 0.746(2)  | 9.9(5)  |
| C3   | 0.5932(6)  | 0.2357(6)  | 0.3219(8)  | 3.7(2)   | C56         | -0.1789(7) | 0.1361(6)  | 0.739(1)  | 6.1(3)  |
| C4   | 0.5658(7)  | 0.1527(7)  | 0.3858(8)  | 4.5(2)   | C61         | -0.2130(6) | 0.3923(5)  | 0.8316(8) | 3.2(2)  |
| C5   | 0.8124(7)  | 0.0152(7)  | 0.3038(9)  | 4.8(2)   | C62         | -0.2377(7) | 0.3528(7)  | 0.9247(8) | 4.3(2)  |
| C6   | 0.8036(7)  | 0.0148(6)  | 0.1736(9)  | 4.6(2)   | C63         | -0.2595(9) | 0.4077(8)  | 1.0175(8) | 5.8(3)  |
| C11  | 0.0146(6)  | 0.4420(5)  | 0.7482(6)  | 2.8(2)   | C64         | -0.2568(9) | 0.5004(8)  | 1.0120(9) | 5.9(3)  |
| C12  | 0.0358(7)  | 0.4815(6)  | 0.8465(8)  | 4.0(2)   | C65         | -0.2320(8) | 0.5380(6)  | 0.923(1)  | 5.9(3)  |
| C13  | 0.0239(8)  | 0.5761(7)  | 0.8555(9)  | 5.2(3)   | C66         | -0.2077(7) | 0.4846(6)  | 0.8288(8) | 4.1(2)  |
| C14  | -0.0071(8) | 0.6307(6)  | 0.7643(9)  | 4.8(2)   | C100        | 0.510(1)   | 0.662(2)   | 0.107(1)  | 13.3(7) |
| C15  | -0.0285(9) | 0.5919(7)  | 0.6629(9)  | 5.4(3)   | <b>B</b> 1  | 0.4978(7)  | 0.0989(8)  | 0.307(1)  | 4.7(3)  |
| C16  | -0.0172(8) | 0.4964(6)  | 0.6549(8)  | 4.5(2)   | B2          | 0.4846(9)  | 0.1508(9)  | 0.178(1)  | 4.9(3)  |
| C21  | 0.0827(6)  | 0.2652(5)  | 0.8598(6)  | 2.7(2)   | B3          | 0.5510(8)  | 0.2388(8)  | 0.189(1)  | 4.3(3)  |
| C22  | 0.0377(6)  | 0.2262(7)  | 0.9345(7)  | 3.9(2)   | B4          | 0.5145(9)  | 0.2652(9)  | 0.415(1)  | 5.3(3)  |
| C23  | 0.0875(8)  | 0.1824(7)  | 1.0283(8)  | 5.0(2)   | B5          | 0.4514(9)  | 0.181(1)   | 0.402(1)  | 5.4(3)  |
| C24  | 0.1787(8)  | 0.1802(7)  | 1.0484(8)  | 5.1(3)   | B6          | 0.3984(8)  | 0.1788(9)  | 0.268(1)  | 5.1(3)  |
| C25  | 0.2236(7)  | 0.2158(7)  | 0.9735(9)  | 4.8(2)   | B7          | 0.4330(8)  | 0.2670(9)  | 0.192(1)  | 4.5(3)  |
| C26  | 0.1767(7)  | 0.2596(6)  | 0.8780(8)  | 4.1(2)   | B8          | 0.5054(9)  | 0.3208(8)  | 0.284(1)  | 4.4(3)  |
| C31  | 0.0874(6)  | 0.2830(6)  | 0.6233(7)  | 2.9(2)   | B9          | 0.4092(8)  | 0.2848(9)  | 0.332(1)  | 4.8(3)  |
| C32  | 0.1629(7)  | 0.3210(7)  | 0.6072(8)  | 4.8(2)   | B11         | 0.7778(8)  | 0.1193(8)  | 0.116(1)  | 4.3(3)  |
| C33  | 0.2185(8)  | 0.2859(9)  | 0.5275(9)  | 5.7(3)   | B12         | 0.7696(70  | 0.1937(6)  | 0.230(1)  | 3.5(2)  |
| C34  | 0.1980(8)  | 0.2139(9)  | 0.4648(90  | 5.8(3)   | B13         | 0.7882(8)  | 0.1234(8)  | 0.349(1)  | 3.9(2)  |
| C35  | 0.1221(8)  | 0.1750(7)  | 0.4791(8)  | 4.7(2)   | B14         | 0.9113(8)  | -0.0120(8) | 0.243(1)  | 4.5(3)  |
| C36  | 0.0673(6)  | 0.2101(6)  | 0.5575(7)  | 3.2(2)   | B15         | 0.8889(9)  | 0.0568(9)  | 0.122(1)  | 4.9(3)  |
| C41  | -0.2315(6) | 0.3856(6)  | 0.5923(7)  | 3.3(2)   | B16         | 0.8706(8)  | 0.1717(8)  | 0.160(1)  | 4.2(2)  |
| C42  | -0.1888(8) | 0.3722(7)  | 0.4957(9)  | 4.8(2)   | B17         | 0.8784(7)  | 0.1752(8)  | 0.3077(9) | 3.8(2)  |
| C43  | -0.228(1)  | 0.4181(8)  | 0.397(1)   | 6.1(3)   | <b>B</b> 18 | 0.9022(8)  | 0.0618(8)  | 0.355(1)  | 4.5(3)  |
| C44  | -0.3092(9) | 0.4776(7)  | 0.3957(9)  | 5.9(3)   | B19         | 0.9529(8)  | 0.0915(8)  | 0.243(1)  | 4.1(2)  |
| Ctd1 | 0.5385     | 0.1754     | 0.2763     |          |             |            |            |           |         |

<sup>a</sup> Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as  $(4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab (\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)]$ .

(angles from  $C_2B_3$  plane  $15-26^\circ$ ). However, there is some asymmetry in the bonding of the B1-C4 dicarbollide ligand. There is greater variation in the Ta-B/Ta-C distances (2.43-(1)-2.58(1) Å) and the B2-H, C3-H, and C4-H bonds project toward Ta to a much lesser extent than normally observed (angles from  $C_2B_3$  plane 5, 10, and  $< 0^\circ$ , respectively). The most unusual feature of the  $(\eta^5-C_2B_9H_{11})TaMe_2^-$  structure is the acute Me—Ta—Me angle  $(82.5(7)^\circ)$ , which is ca. 15° smaller than the X-M-X angles (94-100°) generally observed in d<sup>0</sup> Cp<sub>2</sub>MX<sub>2</sub> complexes.<sup>17</sup> The nonsymmetrical Ta/B1-C4 dicarbollide bonding and the acute Me-Ta-Me angle most likely result from steric interactions involving the dicarbollide and methyl ligands in this crowded species. Several close H-H contacts (2.0-2.4 Å) and short C-B/C-C distances are present and would be reinforced if the methyl ligands were moved further back into the metallocene wedge.<sup>22</sup> For comparison, the O-Sm-O angle of  $(C_2B_9H_{11})_2Sm(THF)_2^-$  is also acute  $(79.5^{\circ})$ ,<sup>3</sup> and the Cl-U-Cl angle in  $(C_2B_9H_{11})_2UCl_2^{2-}$  is 90.3- $(5)^{\circ}.^{2}$ 

The PPN<sup>+</sup> cation of **2** adopts a "transoid" conformation with a staggered arrangement of phenyl groups. This differs from the commonly observed eclipsed ("cisoid") conformation in which two phenyl groups on different phosphorus centers within the same cation adopt a parallel arrangement.<sup>23</sup> The difference can be traced to inter-cation  $\pi$ -stacking interactions involving



Figure 2. Packing diagram for [PPN][ $(\eta^5-C_2B_9H_{11})_2TaMe_2$ ]·CH<sub>2</sub>Cl<sub>2</sub> (2-CH<sub>2</sub>Cl<sub>2</sub>).

phenyl groups on neighboring PPN<sup>+</sup> cations, as shown in the packing diagram in Figure  $2.^{24}$ 

Compex 2 is thermally stable in toluene, THF, and chlorinated solvents but like 1 undergoes facile hydrolysis with release of

<sup>(22)</sup> Close H-H contacts in (C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)<sub>2</sub>TaMe<sub>2</sub><sup>-</sup> (Å): HC2A-HB2, 2.04; HC2B-HC6, 2.23; HC2C-HB11, 2.18; HC1A-HC5, 2.36; HC1B-HC5, 2.27; HC1B-HC6, 2.29; HC1C-HB1, 2.15; HC3-HB12, 2.21; HB3-HB12, 2.38. Close C-B and C-C contacts (Å): C2-B2, 2.83; C2-B11, 2.91; C2-C6, 2.98; C1-B1, 2.87; C1-C5, 2.83.

#### 4402 Inorganic Chemistry, Vol. 33, No. 19, 1994

 $C_2B_9H_{12}^-$ . Attempts to convert 2 to the as yet unknown species  $(C_2B_9H_{11})_2$ TaMe via Ta—Me bond protonolysis or Me<sup>-</sup> abstraction by Lewis acids have thus far been unsuccessful. The reaction of 2 with Bronsted acids yields  $C_2B_9H_{12}^-$  as the only identifiable product, and reactions with Lewis acids yield as yet unidentified mixtures of products.

Synthesis of [PPN][ $(C_2B_9H_{11})_2TaF_2$ ] (3). In an attempt to prepare  $(C_2B_9H_{11})_2TaCl$  by chloride abstraction from 1 with 1

equiv of Ag[PF<sub>6</sub>] in C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>, the difluoride complex [PPN]-[(C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)<sub>2</sub>TaF<sub>2</sub>] (**3**) was obtained in ca. 50% yield. When 2 equiv of Ag[PF<sub>6</sub>] was used in this reaction, **3** was obtained in 98% yield (Scheme 1). A colorless gas identified as PF<sub>5</sub> (<sup>19</sup>F and <sup>31</sup>P NMR and GC-MS) and an off-white precipitate identified as AgCl (solubility) are also produced in this reaction. The reaction of **1** with 2 equiv of LiF in C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub> did not produce **3** even after heating at 80 °C for 13 h. Thus the formation of **3** likely proceeds via sequential abstraction of Cl<sup>-</sup> from **1** by Ag<sup>+</sup>, followed by F<sup>-</sup> transfer from PF<sub>6</sub><sup>-</sup> to Ta. This suggests that ( $\eta^5$ -C<sub>2</sub>B<sub>9</sub>H<sub>11</sub>)<sub>2</sub>TaX (X = Cl, F) species are highly electrophilic, as expected for 14-electron bent-metallocene species.<sup>5</sup>

Acknowledgment. This work was supported by DOE Grant DE-FG02-88ER13935.

**Supplementary Material Available:** Tables of bond distances and angles, anisotropic thermal parameters, hydrogen atom coordinates, and least squares planes and related atomic deviations and dihedral angles for 2 (13 pages). Ordering information is given on any current masthead page.

<sup>(23)</sup> Selected examples: (a) Handy, L. B.; Ruff, J. K.; Dahl, L. F. J. Am. Chem. Soc. 1970, 92, 7327. (b) Ruff, J. K.; White, R. P., Jr.; Dahl, L. F. J. Am. Chem. Soc. 1971, 93, 2159. (c) Goldfield, S. A.; Raymond, K. N. Inorg. Chem. 1974, 13, 770. (d) Garner, C. D.; Mabbs, F. E.; Richens, D. T. J. Chem. Soc., Chem. Commun. 1979, 415. (e) Bryce, M. R.; Ahmad, M. M.; Friend, R. H.; Obertelli, D.; Fairhurst, S. A.; Winter, J. N. J. Chem. Soc., Perkin Trans. 2 1988, 1151. (f) Glidewell, C.; Lambert, R. J.; Hursthouse, M. B.; Motevalli, M. J. Chem. Soc., Dalton Trans. 1989, 2061. (g) Swartz, W. E.; Ruff, J. K.; Hercules, D. M. J. Am. Chem. Soc. 1972, 94, 5227.

<sup>(24)</sup> For a somewhat similar case see: Chivers, T.; Edelmann, F.; Richardson, J. F.; Schmidt, K. J. Can. J. Chem. **1986**, 64, 1509.